Abstract

Osteoporotic fractures impose a substantial burden on patients with diabetes due to their unique characteristics in bone metabolism, limiting the efficacy of conventional fracture prediction tools. Artificial intelligence (AI) algorithms have shown great promise in predicting osteoporotic fractures. This review aims to evaluate the application of traditional fracture prediction tools (FRAX, QFracture, and Garvan FRC) in patients with diabetes and osteoporosis, review AI-based fracture prediction achievements, and assess the potential efficiency of AI algorithms in this population. This comprehensive literature search was conducted in Pubmed and Web of Science. We found that conventional prediction tools exhibit limited accuracy in predicting fractures in patients with diabetes and osteoporosis due to their distinct bone metabolism characteristics. Conversely, AI algorithms show remarkable potential in enhancing predictive precision and improving patient outcomes. However, the utilization of AI algorithms for predicting osteoporotic fractures in diabetic patients is still in its nascent phase, further research is required to validate their efficacy and assess the potential advantages of their application in clinical practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.