Abstract
Cardiovascular diseases (CVD) in animals can severely impact the heart and circulatory systems, like those in humans. Early diagnosis and treatment are crucial for improving animal welfare and lifespan. Traditional diagnostic methods face challenges such as insufficient anamnesis information, high costs of biochemical and hematological tests, and increasing data complexity. This study aims to address these issues by developing AI-based diagnostic systems for fast and accurate CVD diagnosis in cattle using retinal images. A total of 1118 retinal images from 100 cattle were collected, with 52 diagnosed with CVD and 48 as non-CVD. The dataset is publicly available on Kaggle. We evaluated three machine learning methods (Extreme Learning Machine, K-Nearest Neighbors, and Support Vector Machine) and four deep learning models (DenseNet201, ResNet101, SqueezeNet, and InceptionV3) for their diagnostic capabilities. ResNet101 emerged as the most effective model, achieving an accuracy of 96.1 ± 3.15 %, sensitivity of 97.3 ± 2.96 %, specificity of 94.9 ± 4.07 %, and an F1-score of 96.4 ± 0.03. This study demonstrates that AI-based systems, particularly deep learning models, can significantly improve the accuracy of CVD diagnosis in animals, marking a critical advancement in veterinary healthcare.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.