Abstract

Accurately mapping surface water fractions is essential to understanding the distribution and area of small water bodies (SWBs), which are numerous and widespread. Traditional spectral unmixings based on the linear mixture model require high-quality prior endmember information, and are not appropriate in situations such as dealing with multiple scattering effects. To overcome difficulties with unknown mixing mechanisms and parameters, a novel automated and hierarchical surface water fraction mapping (AHSWFM) for mapping SWBs from Sentinel-2 images was proposed. AHSWFM is automated, requires no endmember prior knowledge and uses self-trained regression using scalable algorithms and random forest to construct relationships between the multispectral data and water fractions. AHSWFM uses a hierarchical structure that divides pixels into pure water, pure land and mixed water-land pixels, and predicts their water fractions separately to avoid overestimating water fractions for pure land pixels and underestimating water fractions for pure water pixels. Results show that using the hierarchical strategy can increase the accuracy in estimating SWB areas. AHSWFM predicted SWB areas with a root mean square error of approximately 0.045 ha in a region using more than 1200 SWB samples that were mostly smaller than 0.75 ha.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.