Abstract

BackgroundVarious renal abnormalities, including hydronephrosis, polycystic kidney disease, and hydroureter, have been reported, and these abnormalities are present in DiGeorge syndrome, renal dysplasia, and acute kidney failure. Previous studies have shown that various genes are associated with renal abnormalities. However, the major target genes of nonobstructive hydronephrosis have not yet been elucidated.ResultsWe examined neuroblast differentiation-associated protein Ahnak localization and analyzed morphogenesis in developing kidney and ureter. To investigated function of Ahnak, RNA-sequencing and calcium imaging were performed in wild type and Ahnak knockout (KO) mice. Ahnak localization was confirmed in the developing mouse kidneys and ureter. An imbalance of calcium homeostasis and hydronephrosis, which involves an expanded renal pelvis and hydroureter, was observed in Ahnak KO mice. Gene Ontology enrichment analysis on RNA-seq results indicated that ‘Channel Activity’, ‘Passive Transmembrane Transporter Activity’ and ‘Cellular Calcium Ion Homeostasis’ were downregulated in Ahnak KO kidney. ‘Muscle Tissue Development’, ‘Muscle Contraction’, and ‘Cellular Calcium Ion Homeostasis’ were downregulated in Ahnak KO ureter. Moreover, peristaltic movement of smooth muscle in the ureter was reduced in Ahnak KO mice.ConclusionsAbnormal calcium homeostasis causes renal disease and is regulated by calcium channels. In this study, we focused on Ahnak, which regulates calcium homeostasis in several organs. Our results indicate that Ahnak plays a pivotal role in kidney and ureter development, and in maintaining the function of the urinary system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call