Abstract

Although citrate transporters are involved in iron (Fe) translocation and aluminum (Al) tolerance in plants, to date none of them have been shown to confer both biological functions in plant species that utilize Fe-absorption Strategy I. In this study, we demonstrated that AhFRDL1, a citrate transporter gene from peanut (Arachis hypogaea) that is induced by both Fe-deficiency and Al-stress, participates in both root-to-shoot Fe translocation and Al tolerance. Expression of AhFRDL1 induced by Fe deficiency was located in the root stele, but under Al-stress expression was observed across the entire root-tip cross-section. Overexpression of AhFRDL1 restored efficient Fe translocation in Atfrd3 mutants and Al resistance in AtMATE-knockout mutants. Knocking down AhFRDL1 in the roots resulted in reduced xylem citrate and reduced concentrations of active Fe in young leaves. Furthermore, AhFRDL1-knockdown lines had reduced root citrate exudation and were more sensitive to Al toxicity. Compared to an Al-sensitive variety, enhanced AhFRDL1 expression in an Fe-efficient variety contributed to higher levels of Al tolerance and Fe translocation by promoting citrate secretion. These results indicate that AhFRDL1 plays a significant role in Fe translocation and Al tolerance in Fe-efficient peanut varieties under different soil-stress conditions. Given its dual biological functions, AhFRDL1 may serve as a useful genetic marker for breeding for high Fe efficiency and Al tolerance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.