Abstract

The usage of the Internet of Things (IoT) in the field of transportation appears to have immense potential. Intelligent vehicle systems can exchange seamless information to assist cars to ensure better traffic control and road safety. The dynamic topology of this network, connecting a large number of vehicles, makes it vulnerable to several threats like authentication, data integrity, confidentiality, etc. These threats jeopardize the safety of vehicles, riders, and the entire system. Researchers are developing several approaches to combat security threats in connected and autonomous vehicles. Artificial Intelligence is being used by both scientists and hackers for protecting and attacking the networks, respectively. Nevertheless, wirelessly coupled cars on the network are in constant peril. This motivated us to develop an intrusion detection model that can be run in low-end devices with low processing and memory capacity and can prevent security threats and protect the connected vehicle network. This research paper presents an Attention-enabled Hierarchical Deep Neural Network (AHDNN) as a solution to detect intrusion and ensure autonomous vehicles’ security both at the nodes and at the network level. The proposed AHDNN framework has a very low false negative rate of 0.012 ensuring a very low rate of missing an intrusion in normal communication. This enables enhanced security in vehicular networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.