Abstract

We present low-temperature magnetotransport measurements on graphene rings encapsulated in hexagonal boron nitride. We investigate phase-coherent transport and show Aharonov-Bohm (AB) oscillations in quasi-ballistic graphene rings with hard confinement. In particular, we report on the observation of $h/e$, $h/2e$ and $h/3e$ conductance oscillations. Moreover we show signatures of magnetic focusing effects at small magnetic fields confirming ballistic transport. We perform tight binding calculations which allow to reproduce all significant features of our experimental findings and enable a deeper understanding of the underlying physics. Finally, we report on the observation of the AB conductance oscillations in the quantum Hall regime at reasonable high magnetic fields, where we find regions with enhanced AB oscillation visibility with values up to $0.7$%. These oscillations are well explained by taking disorder into account allowing for a coexistence of hard and soft-wall confinement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.