Abstract

In this work, the Aharonov–Casher (AC) phase is calculated for spin-1 particles in a non-commutative space. The AC phase has previously been calculated from the Dirac equation in a non-commutative space using a gauge-like technique. In the spin-1 case, we use the Kemmer equation to calculate the phase in a similar manner. It is shown that the holonomy receives non-trivial kinematical corrections. By comparing the new result with the already known spin-1/2 case, one may conjecture a generalized formula for the corrections to holonomy for higher spins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.