Abstract
AbstractWe investigate a small tuneable quantum ring fabricated by direct local oxidation using an atomic force microscope. The device contains very few electrons and is tuned into the Kondo regime. We study this Kondo effect by temperature dependent measurements. At finite bias voltages we observe additional peaks. These vanish with increasing temperature indicating Kondo correlations for these excited states. Additionally, the geometry of our device allows to study Aharonov–Bohm oscillations in the Kondo regime for a device containing less than ten electrons. We observe a modulation of the Kondo effect with a reduced Aharonov–Bohm period explained by electron–electron interaction in our small quantum ring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.