Abstract
In the system of several interacting spins, geometric phases have been researched intensively. However, the studies are mainly focused on the adiabatic case (Berry phase), so it is necessary for us to study the non-adiabatic counterpart (Aharonov and Anandan phase). In this paper, we analyze both the non-degenerate and degenerate geometric phase of Lipkin—Meskov—Glick type model, which has many application in Bose—Einstein condensates and entanglement theory. Furthermore, in order to calculate degenerate geometric phases, the Floquet theorem and decomposition of operator are generalized. And the general formula is achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.