Abstract

The chemotherapeutic agent methotrexate is widely used in the treatment of breast cancer. Although its mechanism-of-action has been defined, less is known about its interaction with T cell-mediated antitumor responses. Type 1 CD8 T cell-mediated immune responses (Tc1) are cytolytic, produce IFN-gamma and are associated with effective antitumor responses. Using a murine transgenic TCR tumor model, we show that single-dose treatment with methotrexate enhanced CD8-mediated type 1 antitumor responses when administered 3 days prior to Tc1 effector cell transfer. Co-treatment with methotrexate not only enhanced donor Tc1 cell accumulation and persistence at sites of primary tumor growth, but also promoted elevated levels of activated donor TIL cells. This markedly enhanced the appearance of endogenous differentiated (CD44 High) CD8 tumor-infiltrating cells when compared to that of corresponding groups receiving either MTX or Tc1 cell transfer alone. Such cells were acutely activated as defined by co-expression of surface markers associated with TCR engagement (CD69) and T cell activation (CD25) at both early (days 1–8) and late (days 12–20) stages following treatment. Conversely, such animals showed an early decrease in CD4 +/CD44 High/CD25 +/CD69 + T cells that correlated with delays in tumor growth in vivo. Moreover, cellular response kinetics appeared to further correlate with the up-regulation of endogenous T cells producing the chemokine IP-10 in vivo. This suggested that Tc1 cell transfer, in combination with chemotherapy, can enhance antitumor responses by modulating immunoregulatory T cells involved in homeostasis and immune tolerance within the tumor environment. These studies offer insight into mechanisms that enhance T cell-based immunotherapy in cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call