Abstract

A simple, sensitive and highly specific immunoassay has been developed based on surface-enhanced Raman scattering for human alpha-fetoprotein (AFP), a tumor marker for the diagnosis of hepatocellular carcinoma. This strategy combines the Ag/SiO2 core-shell nanoparticles embedded with rhodamine B isothiocyanate dye molecules as Raman tags and the amino group modified silica-coated magnetic nanoparticle as immobilization matrix and separation tool. In the proposed system, a sandwich-type immunoassay was performed between polyclonal antibody functionalized Ag/SiO2 nanoparticle-based Raman tags and monoclonal antibody modified silica-coated magnetic nanoparticles. The presence of the analyte and the reaction between the antigen and antibody can be monitored by the Raman spectra of the Ag/SiO2 tags. Compared to the previous surface-enhanced Raman immunoassays, the main advantage of this strategy lies in two aspects. One is the high stability of Raman tags derived from the silica shell-coated silver core-shell nanostructure. The other is the use of silica-coated magnetic nanoparticles as immobilization matrix and separation tool, thus avoiding complicated pretreatment and washing steps. We have studied in detail the experimental parameters such as the effects of the antibody concentration modified on the Raman tags and on the magnetic particles, and the immunoreaction time. Using this strategy, concentration of human AFP up to 0.12 microg/ml was detected with a detection limit of 11.5 pg/ml.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.