Abstract

Food intake follows a predictable daily pattern and synchronizes metabolic rhythms. Neurons expressing agouti-related protein (AgRP) read out physiological energetic state and elicit feeding, but the regulation of these neurons across daily timescales is poorly understood. Using a combination of neuron dynamics measurements and timed optogenetic activation in mice, we show that daily AgRP-neuron activity was not fully consistent with existing models of homeostatic regulation. Instead of operating as a 'deprivation counter', AgRP-neuron activity primarily followed the circadian rest-activity cycle through a process that required an intact suprachiasmatic nucleus and synchronization by light. Imposing novel feeding patterns through time-restricted food access or periodic AgRP-neuron stimulation was sufficient to resynchronize the daily AgRP-neuron activity rhythm and drive anticipatory-like behavior through a process that required DMHPDYN neurons. These results indicate that AgRP neurons integrate time-of-day information of past feeding experience with current metabolic needs to predict circadian feeding time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.