Abstract

The main nitrogen (N) sources in soybean production originate from soil fixing bacteria Bradyrhizobium spp. and from mineralization of soil organic N. These sources of N are often not sufficient to cover the N needs of the soybean. The present two-year field study aimed to evaluate the effects of soybean genotypes (Valjevka and Galina) and rates of starter fertilizer N (0, 30, 60, and 90 kg ha−1) on quantitative and qualitative parameters and on rain use efficiency (RUE) under contrasting weather conditions in the Pannonian region of Serbia. A field study conducted during two different growing seasons: first year with unfavorable weather conditions and second year with favorable weather conditions. As expected, the quantitative parameters, oil content, and RUE were higher in the year with favorable growing season, the second one. According to measured parameters, the genotype Valjevka performed higher yield potential as compared to the genotype Galina. The highest values of quantitative parameters and RUE were recorded at 60 kg N ha−1, protein content at 90 kg N ha−1 and oil content 0 kg N ha−1 (control). This study suggests that proper genotype selection and application of 60 kg N ha−1 as a starter dose with rhizobial inoculation could contribute to the high yield, while protein could be altered by N amount, independently on genotype.

Highlights

  • Soybean (Glycine max [L.] Merr.) is one of the most essential most important annual legumes worldwide and considered as the top-traded commodities due to its multiple uses for human and animal nutrition as well as industrial processing [1,2].In Serbia, the soybean is grown on about 200,000 ha with an average yield of 3.3 t ha−1 and with a production of 645,607 tons in 2018 [3]

  • This study suggests that proper genotype selection and application of 60 kg N ha−1 as a starter dose with rhizobial inoculation could contribute to the high yield, while protein could be altered by N amount, independently on genotype

  • Soybean production is based on the utilization of N from the soil and from the atmosphere by nitrogen-fixing bacteria as Agronomy 2020, 10, 535; doi:10.3390/agronomy10040535

Read more

Summary

Introduction

In Serbia, the soybean is grown on about 200,000 ha with an average yield of 3.3 t ha−1 and with a production of 645,607 tons in 2018 [3]. On average, seed yields of soybean in the world and Europe are lower than in Serbia for 0.5 t ha−1 and 1.2 t ha−1 , respectively [3]. In Serbia, domestic cultivars with a high yield potential of about 6 t ha−1 dominate in the sowing structure [4]. Average soybean seed yield in Serbia is unstable and could vary between 1.2 t ha−1 (2000) to 3.6 t ha−1 (2014), as a result of insufficient and unequal precipitation during the growing season [5]. Soybean production is based on the utilization of N from the soil and from the atmosphere by nitrogen-fixing bacteria as Agronomy 2020, 10, 535; doi:10.3390/agronomy10040535 www.mdpi.com/journal/agronomy

Objectives
Methods
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.