Abstract

Layered double hydroxides (LDHs) used to recover P from wastewater have recently been proposed as new slow-release fertilizers. Here, the use of P-exchanged Mg-Al LDHs as powdered or granulated fertilizer is explored and compared with monoammonium phosphate (MAP), a fully water-soluble fertilizer, and with struvite, a recycled phosphate fertilizer with lower solubility. First, these three fertilizers were compared in a 100-day incubation experiment using P diffusion visualization and chemical analysis to assess P release from either granules or powdered fertilizer in three different soils. By the end of the incubation, 74-90% of P remained within the LDH granule, confirming a slow release. Second, a pot experiment was performed with wheat (Triticum aestivum) in an acid and a calcareous soil. The granular treatment resulted in a considerably higher P uptake for MAP compared to LDH and struvite. For the powder treatments, the P uptake was less than for granular MAP and was largely unaffected by the chemical form. The LDHs and struvite showed a lower agronomic effectiveness than granular MAP, but the benefits of their use in P recycling, potential residual value, and environmental benefits may render these slow-release fertilizers attractive.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call