Abstract

Climate change is affecting water resources in south-eastern Spain, and this mainly affects irrigated agriculture. In this context, seawater desalination is an adaptive strategy that has provided increasing water allotments to agriculture for the last decade, to replace decreasing conventional resources. Farmers are concerned about the agronomic effects of this substitution and its economic consequences. This study focuses on the potential agronomic impacts of the progressive replacement of the irrigation water from the Tagus–Segura transfer (TST) with desalinated seawater (DSW) on the main crops of south-eastern Spain. To that end, five main agronomic concerns were selected and analyzed under three water supply scenarios using increasing rates of DSW (0, 50, and 100%). The results indicated that, in addition to other economic or environmental considerations, sufficiently relevant agronomic aspects exist that need to be considered when replacing the TST supply with DSW. This study evidences the risks of phytotoxicity and soil alkalinization, due to the increase in boron concentration and the imbalance between monovalent and divalent cations in the DSW, respectively, and also a slight increase in the cost of fertilizers. In addition, the irrigation water salinity effect on production and total irrigation requirements was negligible, as both water sources present sufficiently low salinity. The detrimental effects were mitigated under a partial replacement scenario, so the blended use of DSW with conventional resources seems the most recommendable option for its agricultural management, rather than irrigating with DSW alone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call