Abstract

Nitrogen (N) management is important for farmers to balance production, economic and environmental performance of their farms. This is particularly true in the intensive cropping systems of northwest Europe where tuber, root and bulb crops are cultivated in rotation with cereal crops and where an intensive livestock sector makes organic manures available at low cost for arable farmers. Here, we build upon a large database of farmer field data to assess mineral and organic fertiliser N performance, and its determinants, for the major arable crops in the Netherlands according to the guidelines provided by the EU N Expert Panel (EUNEP). The EUNEP framework quantifies N outputs and N inputs, N-use efficiency as the ratio between N outputs and N inputs (NUE in kg N output harvested per kg N input) and N surplus as the difference between N inputs and N outputs (Ns in kg N ha−1). As a next step, biophysical and crop management determinants of N performance were explored using data from different years, soil types and N management in relation to the amount, source, time and method of N applied. NUE was on average ca. 0.95 kg N kg−1 N for seed potato, sugar beet and spring onion, 0.87 kg N kg−1 N for ware potato, ca. 0.80 kg N kg−1 N for starch potato and winter wheat and, ca. 0.70 kg N kg−1 N for spring barley, all within or above the target range of 0.50–0.90 kg N kg−1 N proposed by the EUNEP. Ns was on average below the EUNEP threshold of 80 kg N ha−1 for all crops: 78 kg N ha−1 for ware potato and winter wheat, ca. 70 kg N ha−1 for starch potato, ca. 50 kg N ha−1 for spring barley, ca. 25 kg N ha−1 for sugar beet and spring onion and less than 20 kg N ha−1 for seed potato. Although average Ns was below 80 kg N ha−1, ca. 40% of the ware potato, starch potato and winter wheat fields analyzed had Ns above this threshold. The relatively high NUE combined with high Ns for most crops are the result of high N outputs (yields) combined with high N application rates. Moreover, high NUE and small Ns were mostly associated with smaller N application rates and with the use of mineral fertilisers instead of organic fertilisers, while there were no clear relationships between the two indicators on the one hand with N application time or method on the other. We conclude NUE and Ns were on average within the EUNEP target range for most crops, but there are still a considerable number of under-performing farms where increases in NUE and reductions in Ns are possible through reducing N inputs. We recommend future research to assess the benefits of organic fertilisers from a circularity perspective at regional and national levels and to cross-validate the crop-specific results presented in this study with NUE assessments at cropping systems level.

Highlights

  • Sustainable intensification provides the dominant paradigm to reconcile agricultural production on the one hand and environmental quality on the other (Garnett et al, 2013)

  • This study provides an extensive example of the use of ‘big data’ to describe N surplus (Ns) management practices in farmers’ fields and to explain variability in N indicators of crop performance, following the framework of the EU N Expert Panel (EUNEP)

  • Our results suggest that such scope is limited, given already high N-use efficiency (NUE) ranges and the relatively small yield gaps in the Netherlands

Read more

Summary

Introduction

Sustainable intensification provides the dominant paradigm to reconcile agricultural production on the one hand and environmental quality on the other (Garnett et al, 2013) This can be achieved through increases in resource-use efficiency as a result of yield gap closure and reductions in the need for, and use of, external inputs. Understanding the scope to balance productivity and sustainability of agricultural systems requires integrated frameworks, indicators and target values (Chukalla et al, 2020) These are helpful to define a ‘safe operating space’ for agricultural production and resource-use efficiency that explicitly accounts for environmental performance (e.g., Que­ mada et al, 2020; Hunter et al, 2017; Zhang et al, 2015; Bommarco et al, 2013). Throughout this paper, NUE and Ns refer to total (not just ‘plant available’) N budget unless other­ wise indicated

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.