Abstract
Acha (Fonio) Digitaria sp. is a valuable cereal crop widely cultivated in several African countries. The genetic improvement of Acha through induced mutagenesis has gained attention for enhancing desirable traits. Colchicine, a mitotic inhibitor, is commonly used to induce polyploidy, which can lead to alterations in plant characteristics. This study aimed to investigate the effects of colchicine treatment on germination, plant height, and leaf count of two Acha species. Seeds from two Digitaria species, Digitaria exilis, and Digitaria iburua, were subjected to colchicine treatment using different concentrations (0.05, 0.10, 0.15, and 0.20g/dL). The control group was treated with distilled water. Germination rates were assessed by measuring the percentage of seeds that successfully sprouted. Plant height and leaf number were measured at maturity and analyzed using ANOVA on SPSS Version 26. The results indicated that colchicine treatment significantly affected germination, plant height, and leaf number in both Digitaria species. Germination rates varied depending on the concentration, with lower germination observed at higher concentrations (70.70% and 74.3% for 0.20g/dL treatment in both species). In terms of plant height, colchicine-treated Acha plants exhibited significant differences compared to the control group. The majority of treated plants showed increased growth (57.00 cm to 60.70 cm in D. exilis and 114.10 to 122.40 cm in D. iburua) compared to the control. Variability in plant height was observed among the treated plants, suggesting that colchicine-induced polyploidy had varying effects on height across different genotypes. Similarly, the number of leaves was affected by colchicine treatment. Treated plants exhibited an increase in leaf number (56.70 to 60.7 for D exilis and 32.60 to 36.30 for D. iburua), compared to the control group (49.7 and 29.7 respectively). This variability suggests that colchicine-induced polyploidy may have influenced leaf development and growth patterns in Acha. Colchicine treatment had significant effects on germination, plant height, and leaf count in both varieties of Acha. The results suggest that colchicine-induced polyploidy can alter these plant characteristics. These findings provide insights into the potential use of colchicine treatment for inducing desirable traits in Acha through polyploidization, which may have implications for crop improvement and breeding programs. Further research is warranted to explore the underlying mechanisms and assess the impact of these alterations on overall agronomic performance and yield potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.