Abstract

Key messageModified pEAQ-HT-DEST1 vectors were used for agroinfiltration in legumes. We demonstrate protein expression and export in pea, lentil, and faba bean; however, the method for chickpea was not successful.Agroinfiltration is a valuable research method for investigating virulence and avirulence effector proteins from pathogens and pests, where heterologous effector proteins are transiently expressed in plant leaves and hypersensitive necrosis responses and other effector functions can be assessed. Nicotiana benthamiana is widely used for agroinfiltration and the characterisation of broad-spectrum effectors. The method has also been used in other plant species including field pea, but not yet developed for chickpea, lentil, or faba bean. Here, we have modified the pEAQ-HT-DEST1 vector for expression of 6 × histidine-tagged green-fluorescent protein (GFP) and the known necrosis-inducing broad-spectrum effector necrosis and ethylene-inducing peptide (Nep1)-like protein (NLP). Modified pEAQ-based vectors were adapted to encode signal peptide sequences for apoplast targeting of expressed proteins. We used confocal microscopy to assess the level of GFP expression in agroinfiltrated leaves. While at 3 days after infiltration in N. benthamiana, GFP was expressed at a relatively high level, expression in field pea and faba bean at the same time point was relatively low. In lentil, an expression level of GFP similar to field pea and faba bean at 3 days was only observed after 5 days. Chickpea leaf cells were transformed at low frequency and agroinfiltration was concluded to not be successful for chickpea. We concluded that the pEAQ vector is suitable for testing host-specific effectors in field pea, lentil, and faba bean, but low transformation efficiency limits the utility of the method for chickpea.

Highlights

  • Agroinfiltration is the process by which transgenes are transiently expressed in somatic cells of plant tissues such as leaves

  • The pEAQ-HT-DEST1 vector was selected for the development of constructs for agroinfiltration in cool-season food legume species, because this vector has been optimised for high levels of transient protein expression in plants

  • This has been achieved in the pEAQ vector series by addition of 5′ and 3′ CPMV-HT UTR sequences and a P19 plant expression cassette for co-expression of the P19 silencing suppressor and the inserted transgene (Sainsbury et al 2009). pEAQ-HT-DEST1 and the derived constructs produced have T-DNA left and right borders for integration into the nuclear genome of transformed leaf tissue cells of agroinfiltrated leaves

Read more

Summary

Introduction

Agroinfiltration is the process by which transgenes are transiently expressed in somatic cells of plant tissues such as leaves. Hypersensitive responses and induced necrosis in N. benthamiana exposed to transgene-expressed effectors suggest virulence roles of broad-spectrum effectors from the source pathogen in its natural host. Co-expression of agroinfiltrated constructs for both pathogen effector and cognate native host receptor in N. benthamiana has been successfully used to demonstrate effector and receptor function for proteins from pathogens outside of their natural host system. An example of this application is for the Cladosporium fulvum avirulence effector and tomato host–receptor pairs, Avr4/Cf-4 and Avr9/Cf-9 that when co-expressed in Nicotiana tabacum and N. benthamiana produce hypersensitive chlorosis and necrosis responses (Van der Hoorn et al 2000). Characterised pathogen effectors from oomycete and fungal diseases of potato and wheat have been used to dissect the genetic resistance mechanisms in their respective hosts and to screen breeding material in plant breeding programs (Vleeshouwers and Oliver 2014)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call