Abstract

The worldwide boom of biochar and pyrogenic carbonaceous material application as a potential soil additive has brought about not only agricultural benefits such as enhanced crop yield, nutrients supply (P), and soil organic carbon increase, but also, on the other hand, environmental risk of organic (polycyclic aromatic hydrocarbons (PAHs)) and potentially toxic element (PTE) penetration into arable soils. Therefore, our study assessed pyrogenic carbonaceous materials (PCM) produced from the P-rich feedstocks—chicken manure (CM) and bone meal (BM)—as promising and safe alternatives for inorganic P fertilizers. Pyrogenic materials produced in the process of slow pyrolysis at residence time 2 h, 400 and 500 °C, were characterized by determination of pH, electrical conductivity (EC), elemental analysis of total C, H, N, S scanning electron microscopy (SEM), total content of P, selected potentially toxic elements (PTEs), and available forms of PTEs and P by diethylenetriaminepentaacetic acid (DTPA) and calcium-acetate-lactate (CAL) extractions. CMPCM4, CMPCM5, BMPCM4, and BMPCM5 were characterized by determination of total 16 US-EPA (U.S. Environmental Protection Agency) PAHs by toluene extraction protocol and available concentrations by Tenax resin approach. Additionally, CMPCM4, CMPCM4, BMPCM4, and BMPCM5 were tested in earthworm avoidance test with Eisenia foetita and short-term rye-seedling germination test. Obtained results showed decreasing of total carbon in the order of BM > BMPCM4 > BMPCM5 and increasing in the order of CM < CMPCM4 < CMPCM5. Total phosphorus content increased from 56.8 ± 1.7 g kg−1 (BM) to 85.2 ± 4.2 g kg−1 (BMPCM4) to 110.5 ± 7.0 g kg−1 (BMPCM5). In the case of chicken manure-derived pyrogenic materials, total phosphorus content increased in the order of CM (22.9 ± 2.0 g kg−1) < CMPCM4 (37.0 ± 4.5 g kg−1) < CMPCM5 (40.0 ± 3.4 g kg−1). Availability of selected PTEs and P decreased in pyrogenic materials compared to feedstock. Total concentration of ∑16-US-EPA PAHs in BMPCM4 and BMPCM5 was 3.92 mg kg−1; CMPCM4, 7.33 mg kg−1; and CMPCM, 6.69 mg kg−1. The Tenax-available ∑16-PAHs showed concentrations of 0.53 mg kg−1 for BMPCM4, 0.26 mg kg−1 for BMPCM5, 1.13 mg kg−1 for CMPCM4, and 0.35 mg kg−1 for CMPCM5. Total P concentrations determined in rye aboveground tissues showed the highest accumulation ability in the case of CMPCM5 compared to other samples. Pyrogenic carbonaceous materials produced from chicken manure and bone meal at 400 and 500 °C have the potential to be P slow release fertilizers and may be ecologically safe.

Highlights

  • Agricultural soils globally are at risk of losing organic carbon by intensive soil tillage and ineffective cropping practices

  • Feedstock mass loss during pyrolysis corresponded to an increase in process temperature with production yields of 46% for BMPCM4, 35% for BMPCM5, 47% for CMPCM4, and 40% for CMPCM5

  • The carbon and nitrogen residing within the volatile chemical components of bone meal-derived pyrogenic materials were preferentially lost compared to the less volatile elements that concentrated under pyrolysis conditions (Table 1)

Read more

Summary

Introduction

Agricultural soils globally are at risk of losing organic carbon by intensive soil tillage and ineffective cropping practices. About 45% of all European mineral soils have low to very low organic carbon contents (0–2%) [1]. Fertilizer products that consider the demand of crops for both nutrient and soil organic carbon can be efficient soil amendments with properties not simulated by conventional mineral or organic fertilizers. Development of such innovative products requires feedstock-specific carbonization steps that will modify the labile carbon of wastes and residues into stable organic carbon compounds with mean soil residence times of decades to centuries [4]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.