Abstract

All Agrobacterium tumefaciens strains studied up to now transfer an active 6b gene to plant cells. However, the role of this gene in natural tumour induction is unknown. Various effects of 6b on plant cell growth have been described, but the precise mechanism by which 6b causes these effects has not been elucidated. Earlier experiments indicated that the 6b gene might increase auxin sensitivity as do the A. rhizogenes rol genes. The 6b gene from Tm4 (T-6b) was therefore compared with the rolB and rolABC genes. Although T-6b was unable to induce root formation, it strongly interfered with root induction and root elongation. In rolABC/T-6b coinfection experiments on carrots, T-6b-transformed cells stimulated root outgrowth of rolABC-transformed cells, indicating that the biologically active T-6b product is diffusible. Carrot rolABC roots containing the T-6b gene rapidly developed into unorganized calli. Nicotiana rustica roots with rolABC and T-6b continued their development, but became very large. Fragments of such roots formed callus at alpha-naphthaleneacetic acid concentrations which inhibited growth of rolABC and normal root fragments, suggesting that the role of 6b genes in natural tumour induction may be to reduce the inhibitory effects of high auxin levels and to keep cells in an undifferentiated state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call