Abstract
To develop a system forAgrobacterium-mediated transformation of maize (Zea mays L.), we have investigated histochemically the transient expression of β-glucuronidase (GUS) activity in maize seedling tissue segments using binary vectors that allow minimal (pKIWI105 and pCNL1) or undetectable (p35S-GUS-INT and pCNL56) levels of GUS activity inA. tumefaciens. Tissue segments from three- to five-day-old sterile seedlings of maize genotype A188 were inoculated withA. tumefaciens. Four days after inoculation, transient expression of GUS activity was found in mesocotyl segments originating from the intercalary meristem region. This GUS activity was specific to the vascular cylinder and was not found in the internal cortical or epidermal layers, nor was it found in mature mesocotyl tissue (segments 5 mm below the coleoptilar node). Transient GUS activity was also detected in leaf and coleoptile tissues of shoot segments, but not in the shoot apexper se or in leaves younger than the first leaf. Maize tissues inoculated withA. tumefaciens strains that harbourgusA-containing binary vectors but no Ti-plasmid did not show GUS activity, supporting evidence from previous work thatvir gene activity was essential for the observed GUS activity.A. tumefaciens strains containing different types of Ti-plasmids were also tested. A strain harbouring an agropine-type Ti-plasmid was the most effective for expressing GUS activity in mesocotyl segments, whereas a strain harboring a nopaline-type Ti-plasmid was most effective for expression of GUS activity in the apical meristem-containing segment. These results indicate that different interactions occurred between the differentA. tumefaciens strains and the susceptible plant tissues. Maize genotype specificity for GUS activity in mesocotyl tissues was observed; variations in the cocultivation medium had a profound effect on the frequency of expression of GUS activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.