Abstract
Agrivoltaics, which integrate photovoltaic power production with agriculture in the same plot of land, have the potential to reduce land competition, reduce crop irrigation, and increase solar panel efficiency. To optimize agrivoltaic systems for crop growth, energy pathways must be characterized. While the solar panels shade the crops, they also emit longwave radiation and partially block the ground from downwelling longwave radiation. A deeper understanding of the spatial variation in incoming energy would enable controlled allocation of energy in the design of agrivoltaic systems. The model also demonstrates that longwave energy should not be neglected when considering a full energy balance on the soil under solar panels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.