Abstract

Interaction between extracellular matrix proteins and regulatory proteinases can mediate synaptic integrity. Previously, we documented that matrix metalloproteinase 3 (MMP-3) expression and activity increase following traumatic brain injury (TBI). We now report protein and mRNA analysis of agrin, a MMP-3 substrate, over the time course of trauma-induced synaptogenesis. Agrin expression during the successful synaptic reorganization of unilateral entorhinal cortical lesion (UEC) was compared with expression when normal synaptogenesis fails (combined fluid percussion TBI and bilateral entorhinal lesion [BEC]). We observed that agrin protein was increased in both models at 2 and 7 days postinjury, and immuohistochemical (IHC) co-localization suggested reactive astrocytes contribute to that increase. Agrin formed defined boundaries for sprouting axons along deafferented dendrites in the UEC, but failed to do so after combined insult. Similarly, Western blot analysis revealed greater increase in UEC agrin protein relative to the combined TBI+BEC model. Both models showed increased agrin transcription at 7 days postinjury and mRNA normalization by 15 days. Attenuation of synaptic pathology with the NMDA antagonist MK-801 reduced 7-day UEC agrin transcript to a level not different from unlesioned controls. By contrast, MK-801 in the combined insult failed to significantly change 7-day agrin transcript, mRNA levels remaining elevated over uninjured sham cases. Together, these results suggest that agrin plays an important role in the sprouting phase of reactive synaptogenesis, and that both its expression and distribution are correlated with extent of successful recovery after TBI. Further, when pathogenic conditions which induce synaptic plasticity are reduced, increase in agrin mRNA is attenuated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.