Abstract

Greenhouse gases are one of the most important factors in climate change, their emissions reduction is a global problem. Clarifying the spatial patterns of N2O, as an important component of greenhouse gases, it is of great significance. Based on the planting and breeding data of China from 2000 to 2019, this paper measures the N2O emissions of agricultural systems, and uses kernel density to explore the spatial distribution differences between the eight major economic zones. Finally, the proposed emissions reduction countermeasures are provided. The research results show that the N2O emissions of China’s agricultural system showed a trend of increasing first and then decreasing, and in 2019, the national N2O emissions were 710,300 tons, agricultural land emissions and animal husbandry emissions were the main sources of N2O emissions. The difference in N2O emissions by province was significant, the concentration trend was more prominent, and the differences of N2O emissions between provinces and regions were diverse. In order to achieve the reduction in N2O emissions, it is necessary to carry out low-carbon production of staple grains for different parts and economic zones, and focusing on low-carbon production in the Central Part and the West Part, as well as the Northeast and the Greater Southwest zones, is essential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call