Abstract

Under the influence of the coronavirus disease and other factors, agricultural product prices show non-stationary and non-linear characteristics, making it increasingly difficult to forecast accurately. This paper proposes an innovative combinatorial model for Chinese hog price forecasting. First, the price is decomposed using the Seasonal and Trend decomposition using the Loess (STL) model. Next, the decomposed data are trained with the Long Short-term Memory (LSTM) and Seasonal Autoregressive Integrated Moving Average (SARIMA) models. Finally, the prepared data and the multivariate influence factors after Factor analysis are predicted using the gated recurrent neural network and attention mechanisms (AttGRU) to obtain the final prediction values. Compared with other models, the STL-FA-AttGRU model produced the lowest errors and achieved more accurate forecasts of hog prices. Therefore, the model proposed in this paper has the potential for other price forecasting, contributing to the development of precision and sustainable agriculture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.