Abstract

BackgroundRhizosphere microbial communities are key regulators of plant performance, yet few studies have assessed the impact of different management approaches on the rhizosphere microbiomes of major crops. Rhizosphere microbial communities are shaped by interactions between agricultural management and host selection processes, but studies often consider these factors individually rather than in combination. We tested the impacts of management (M) and rhizosphere effects (R) on microbial community structure and co-occurrence networks of maize roots collected from long-term conventionally and organically managed maize-tomato agroecosystems. We also explored the interaction between these factors (M × R) and how it impacts rhizosphere microbial diversity and composition, differential abundance, indicator taxa, co-occurrence network structure, and microbial nitrogen-cycling processes.ResultsHost selection processes moderate the influence of agricultural management on rhizosphere microbial communities, although bacteria and fungi respond differently to plant selection and agricultural management. We found that plants recruit management-system-specific taxa and shift N-cycling pathways in the rhizosphere, distinguishing this soil compartment from bulk soil. Rhizosphere microbiomes from conventional and organic systems were more similar in diversity and network structure than communities from their respective bulk soils, and community composition was affected by both M and R effects. In contrast, fungal community composition was affected only by management, and network structure only by plant selection. Quantification of six nitrogen-cycling genes (nifH, amoA [bacterial and archaeal], nirK, nrfA, and nosZ) revealed that only nosZ abundance was affected by management and was higher in the organic system.ConclusionsPlant selection interacts with conventional and organic management practices to shape rhizosphere microbial community composition, co-occurrence patterns, and at least one nitrogen-cycling process. Reframing research priorities to better understand adaptive plant-microbe feedbacks and include roots as a significant moderating influence of management outcomes could help guide plant-oriented strategies to improve productivity and agroecosystem sustainability.

Highlights

  • Rhizosphere microbial communities are key regulators of plant performance, yet few studies have assessed the impact of different management approaches on the rhizosphere microbiomes of major crops

  • While plants acted as a selective filter to decrease diversity in the rhizosphere of organically grown plants, rhizosphere bacterial/archaeal diversity was enriched in the conventional system compared to bulk soil (M × R p < 0.001, Additional file 8: Figure S1a)

  • Agricultural management and plant selection are known to be powerful influences on microbial community assembly, and our work shows that their interaction results in plant recruitment of management-system-specific taxa and shifts in microbial networks and at least one N-cycling pathway in the rhizosphere

Read more

Summary

Introduction

Rhizosphere microbial communities are key regulators of plant performance, yet few studies have assessed the impact of different management approaches on the rhizosphere microbiomes of major crops. Rhizosphere microbial communities are shaped by interactions between agricultural management and host selection processes, but studies often consider these factors individually rather than in combination. Management practices such as crop rotation, fertilization, and tillage alter soil physicochemical parameters, influencing the diversity and composition of bulk soil bacterial and fungal communities [1]. Plant roots create additional complexity, establishing resource-rich hotspots with distinct properties from the bulk soil and selectively recruiting microbial communities in the rhizosphere [2, 3]. Agricultural management establishes soil physicochemical properties that influence microbial community composition, structure, and nutrient-cycling functions. Co-occurrence network analysis has shown that these taxonomic shifts can shape patterns of ecological interactions regulating structure, function, and potential resilience of soil microbial communities [9,10,11,12]. Nutrient management strategies are strong drivers of co-occurrence network structural properties, outcomes across regions and agroecosystems are inconsistent and a function of other environmental and management factors [13,14,15]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call