Abstract

The last two decades have witnessed a large-scale conversion of crop cultivation areas into small and mid-sized tea plantations in Assam, India. Agricultural land-use pattern positively or negatively influences native hydrology and above- and belowground biodiversity. Very little is known about the effect of agricultural land-use patterns on the soil virus (especially, bacteriophage) community structure and function. This metagenomic-based study evaluated the rhizosphere viral community structure of three interlinked cultivation areas, viz., mixed cropping area (coded as CP1), tea-seed orchard (CP2), and monocropping tea cultivation (CP3). The bacteriophages belonged to four major classes with the dominance of Malgrandaviricetes (CP1: 79.37%; CP2: 64.62%; CP3: 4.85%) followed by Caudoviricetes (CP1: 20.49%; CP2: 35.22%; CP3: 90.29%), Faserviricetes (CP1: 0.03%; CP2: 0.08%; CP3: 3.88%), and Tectiliviricetes (CP1: 0.12%; CP2: 0.07%; CP3: 0.97%). Microviruses dominated the phage population in both CP1 and CP2, representing 79.35% and 64.59% of total bacteriophage abundance. Both CP1 and CP2 had higher bacteriophage richness (species richness, R in CP1: 65; R in CP2: 66) and lower evenness (Pielou's evenness index, J in CP1: 0.531; J in CP2: 0.579) compared to the CP3 (R: 30; J: 0.902). Principal component analysis of edaphic soil factors and bacteriophage community structure showed a reverse-proportional correlation between the levels of Al saturation, and exchangeable Al3+ ions with that of soil pH, and bacteriophage abundance. Our study indicates that monocropping tea cultivation soil bears less viral richness, abundance, and heterogeneity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call