Abstract

Developing different robotic platforms for farm operations is vital to addressing the increasing world population. A harvesting robot significantly increases a farm’s productivity while farmers focus on other relevant farm operations. From the literature, it could be summarized that the design concepts of the harvesting mechanisms were categorized as grasping and cutting, vacuum suction plucking systems, twisting and plucking mechanisms, and shaking and catching. Meanwhile, robotic system components include the mobile platform, manipulators, and end effectors, sensing and localization, and path planning and navigation. The robotic system must be cost-effective and safe. The findings of this research could contribute to the design process of developing a harvesting robot or developing a harvesting module that can be retrofitted to a commercially available mobile platform. This paper provides an overview of the most recent harvesting robots’ different concept designs and system components. In particular, this paper will highlight different agricultural ground mobile platforms and their associated mechanical design, principles, challenges, and limitations to characterize the crop environment relevant to robotic harvesting and to formulate directions for future research and development for cotton harvesting platforms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.