Abstract

Soil moisture (SM) at three depths (15, 25, and 30 cm), derived from the optical trapezoidal model (OPTRAM), was used for multiyear, multisite monitoring of agricultural droughts over two agricultural crops (Maize and Soybean) in southern Mozambique. The OPTRAM was implemented using satellite data from Sentinel-2 and was validated against field SM assessed by gravimetric methods and by Watermark Sensors in sandy-soils with very low water holding capacity (0.13 cm3 / cm3). The OPTRAM model estimated the SM at 15 and 25 cm yielding a R2 ≥ 0.79 and RMSE ≤ 0.030 cm3 / cm3. The OPTRAM-derived SM was successfully used as input to compute and map the soil water deficit index, an indicator of agricultural drought. The results indicate that OPTRAM can provide useful information to improve water productivity in cropland under the specific conditions of Mozambique agricultural systems and for early warning systems development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.