Abstract
For weather monitoring system and irrigation controller, we need to measure different parameters i.e. Atmospheric temperature, Humidity, Wind speed, Wind direction, Radiation, Soil temperature, Sunshine and Rain fall etc. The key objective of this project is to report on a developed indigenous low cost time based microcontroller based irrigation scheduler who performs user defined functions and outputs commands to derive appropriate actuators (relay, solenoid valves, motor). A soil moisture sensor was modeled, simulated and tested for achieving, with low-cost, accurate and reliable measurements. A low-cost high-performance and small temperature sensor is used, with the same PCB circuit it can measure humidity also. The tipping bucket rain gauge is used to measure rain fall. After a pre-set amount of precipitation falls, the lever tips, dumping the collected water and sending an electrical signal. An anemometer is a device used for measuring wind speed, and is a common weather station instrument. Hence current research focuses on precision agriculture, soil conservation and crop irrigation scheduling and water quantity control for increasing water use efficiency. There is a need to develop new indigenous irrigation controller to improve farm productivity and input use efficiency of water and other nutrients. This system presents the design and development of Irrigation controller System built around PIC16F877A microcontroller. The system consists of microcontroller, peripherals including RTC, LCD and driver circuit relay to switch on/off a motor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOSR Journal of Electronics and Communication Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.