Abstract
Several semi-supervised learning methods have been proposed to leverage unlabeled data, but imbalanced class distributions in the data set can hurt the performance of most algorithms. In this paper, we adapt the new approach of contrast classifiers for semi-supervised learning. This enables us to exploit large amounts of unlabeled data with a skewed distribution. In experiments on a speech act (agreement/disagreement) classification problem, we achieve better results than other semi-supervised methods. We also obtain performance comparable to the best results reported so far on this task and outperform systems with equivalent feature sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.