Abstract
This paper introduces Agreement Theorems to dynamic-epistemic logic. We show first that common belief of posteriors is sufficient for agreement in epistemic-plausibility models, under common and well-founded priors. We do not restrict ourselves to the finite case, showing that in countable structures the results hold if and only if the underlying plausibility ordering is well-founded. We then show that neither well-foundedness nor common priors are expressible in the language commonly used to describe and reason about epistemic-plausibility models. The static agreement result is, however, finitely derivable in an extended modal logic. We provide the full derivation. We finally consider dynamic agreement results. We show they have a counterpart in epistemic-plausibility models, and provide a new form of agreements via public announcements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.