Abstract

Intelligent Transportation security requires cooperative credentials for sharing navigation and communication data between the vehicles. However due to the dynamic environment, communication is interrupted by the adversaries, resulting in non-privacy issues. This article introduces an Agreement-induced Data Verification Model (ADVM) for securing vehicular communication against adversaries. The connected vehicles in a grid communicate with each other based on direct and indirect recommendation. This recommendation is based on mutual identity sharing between the vehicles for masked information exchange. Non-replicated and recommendation based verifications are performed using the vector classification learning. In this learning process, the credential validity and communication tolerance amid adversaries are augmented. The constraint-failing vehicles are disconnected from the communication grid, preventing its insecure impact over the communication. The proposed model’s performance is verified using false rate, success ratio, processing time, complexity, and recommendation ratio. For the different vehicles, the proposed model achieves 9.69% less false rate, 10.3% success ratio, 10.49% less processing time, 10.3% less complexity, and 12.87% high recommendation ratio.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.