Abstract

Applications that cater to the needs of disaster incident response generate large amount of data and demand large computational resource access. Such datasets are usually collected in real-time at the incident scenes using different Internet of Things (IoT) devices. Hierarchical clouds, i.e., core and edge clouds, can help these applications’ real-time data orchestration challenges as well as with their IoT operations scalability, reliability and stability by overcoming infrastructure limitations at the ad-hoc wireless network edge. Routing is a crucial infrastructure management orchestration mechanism for such systems. Current geographic routing or greedy forwarding approaches designed for early wireless ad-hoc networks lack efficient solutions for disaster incident-supporting applications, given the high-speed and low-latency data delivery that edge cloud gateways impose. In this paper, we present a novel Artificial Intelligent (AI)-augmented geographic routing approach, that relies on an area knowledge obtained from the satellite imagery (available at the edge cloud) by applying deep learning. In particular, we propose a stateless greedy forwarding that uses such an environment learning to proactively avoid the local minimum problem by diverting traffic with an algorithm that emulates electrostatic repulsive forces. In our theoretical analysis, we show that our Greedy Forwarding achieves in the worst case a 3.291 path stretch approximation bound with respect to the shortest path, without assuming presence of symmetrical links or unit disk graphs. We evaluate our approach with both numerical and event-driven simulations, and we establish the practicality of our approach in a real incident-supporting hierarchical cloud deployment to demonstrate improvement of application level throughput due to a reduced path stretch under severe node failures and high mobility challenges of disaster response scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.