Abstract

AbstractThe aim of animal reintroductions has mainly been species recovery; only few reintroduction initiatives focus on ecosystem restoration. Therefore, reintroduction consequences on ecological interactions are seldom assessed. We used the interaction between a reintroduced population of agoutis (Dasyprocta leporina) and a vulnerable tropical endemic tree (Joannesia princeps) to examine reintroduction effects on seed dispersal and seedling establishment. To test the outcomes of this interaction, we tracked seeds of J. princeps in two adjacent forest areas with and without reintroduced agoutis. We also assessed if dispersal distances affected seedling survival. To determine seed fate and dispersal distance, we used spool‐and‐line tracking, together with camera traps to identify dispersers. Agoutis were the only species removing J. princeps seeds, thus dispersal only occurred where agoutis had been reintroduced; in the area without agoutis, all seeds remained intact on the soil, even one year after the experiment's beginning. At the reintroduction area, most seeds were preyed upon by agoutis but 7% remained dispersed and 2% germinated after ten months. Only seeds buried by agoutis were able to germinate. Most dispersed seeds were dispersed 15 m or farther and longer dispersal distances benefited J. princeps, since seedlings farther from a conspecific adult tree had greater survival probability. Agoutis were also seen burying seeds of two other plant species; these mammals have the potential to benefit dozens of large‐seeded species in our study system. Agouti reintroduction thus exemplifies the value of trophic rewilding programs to re‐establish ecological interactions and restore ecosystem functioning.Abstract in Portuguese is available with online material

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call