Abstract

Short-term incubation of intact neuronal cells with muscarinic cholinergic agonists resulted in a rapid decrease of the specific binding of [ 3H]methylscopolamine to cell surface receptors indicative of receptor internalization. The agonists induced the internalization of both the muscarinic receptor subtypes coupled to adenylyl cyclase and those coupled to phosphoinositide turnover. Receptor internalization, which was inhibited at 0–4° and by depletion of intracellular K +, is thought to occur through coated pits formation and was rapidly reversible. Receptor recycling did not imply protein synthesis. Down-regulation of muscarinic receptors occurred slowly in the presence of agonists, needed intact cytoskeleton (demonstrated by the inhibitory effect of colchicine) and involved lysosomal activity. Both receptor internalization and down-regulation were prevented by muscarinic receptor antagonists. Receptor internalization and down-regulation are agonist-induced cellular mechanisms that with receptor phosphorylation and uncoupling, may induce desensitization. These processes may contribute to complex intracellular regulatory processes and may be involved in some of the long-term effects of neurotransmitters (mainly neuropeptides and growth hormones) or drugs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.