Abstract
Preeclampsia (PE), new-onset hypertension with proteinuria during pregnancy, is associated with increased reactive oxygen species, the vasoactive peptide endothelin-1 (ET-1), T and B lymphocytes, soluble antiangiogenic factors sFlt-1 and sEndoglin (sFlt-1 and sEng), and agonistic autoantibodies to the angiotensin II type I receptor (AT1-AA). One important area of investigation for our laboratory was to determine what role AT1-AA plays in the pathophysiology associated with PE. To achieve this goal, we examined the effect of AT1-AA suppression on hypertension in response to placental ischemia as well as the effect of AT1-AA on increased blood pressure, ET-1, reactive oxygen species, and sFlt-1 in normal pregnant rats (NP). We demonstrated reductions in uterine perfusion pressure (RUPP) to be a stimulus for AT1-AA during pregnancy. We utilized the technique of B-cell depletion to suppress circulating AT1-AA in RUPP rats and found that AT1-AA suppression in RUPP rats was associated with lower blood pressure and ET-1 activation. To determine a role for AT1-AA to mediate hypertension during pregnancy, we infused purified rat AT1-AA (1:50) into NP rats, and analyzed blood pressure and soluble factors. We consistently found that AT1-AA infused rats had significantly increased AT1-AA and blood pressure above NP rats. This hypertension was associated with significantly increased ET-1 in renal cortices (11-fold) and placenta (4-fold), and there was an approximately 2- to 3-fold increase in placental oxidative stress. Furthermore, antiangiogenic factors sFlt-1 and sEng were significantly increased in the AT1-AA induced hypertensive group compared with the NP controls. Collectively, these data indicated an important role for AT1-AA stimulated in response to placental ischemia that caused hypertension during pregnancy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.