Abstract

Vasomotion is linked to the rapid oscillations of intracellular calcium levels. In rat pulmonary artery, this activity can manifest as a slow periodic on-off pattern, the timing of which depends on the type and intensity of pharmacological stimuli employed. In this study, we have sought to characterize a slow-wave vasomotor activity pattern induced in isolated arterial ring preparations by simultaneous exposure to the α(1) -adrenoceptor agonist phenylephrine (1-10 nm) and the L channel agonist S(-)-Bay K 8644 (3-20 nm). Treated tissues responded with a stable on-off pattern of vasomotion persisting for >5 h at 5-6 cycles/h. In intact rings, this response was suppressed by methacholine and restored or enhanced by N(ω) -nitro-l-arginine methyl ester. Analogous inhibitory effects were obtained with high Mg(2+) , 8-Br-cGMP (but not 8-Br-cAMP), riluzole, ryanodine, chelerythrine, and fasudil. Pinacidil (30 nm) increased off-cycle length without change in slow-wave amplitude. Conversely, tetraethylammonium (1.0-3.0 mm) augmented the latter without affecting periodicity. Carbenoxolone (10 μm) abolished slow-wave activity, while raising basal tone and inducing random phasic activity. In endothelium-denuded rings, the threshold of agonist-induced slow-wave vasomotion was lowered and a similar inhibitory effect obtained with carbenoxolone. In conclusion, the slow-wave pattern of vasomotion described here is (i) subject to inhibitory modulation by endothelial NO and an array of voltage-gated and leak K conductances yet to be fully characterized; (ii) dependent on Ca(2+) from both extracellular and sarcoendoplasmatic sources; (iii) controlled by kinase (Rho and PKC)-mediated regulation of myosin light chain phosphatase; and (iv) synchronized via intermyocyte gap junctions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call