Abstract

The glucagon-like peptide-1 receptor (GLP-1R), a key pharmacological target in type 2 diabetes (T2D) and obesity, undergoes rapid endocytosis after stimulation by endogenous and therapeutic agonists. We have previously highlighted the relevance of this process in fine-tuning GLP-1R responses in pancreatic beta cells to control insulin secretion. In the present study, we demonstrate an important role for the translocation of active GLP-1Rs into liquid-ordered plasma membrane nanodomains, which act as hotspots for optimal coordination of intracellular signaling and clathrin-mediated endocytosis. This process is dynamically regulated by agonist binding through palmitoylation of the GLP-1R at its carboxyl-terminal tail. Biased GLP-1R agonists and small molecule allosteric modulation both influence GLP-1R palmitoylation, clustering, nanodomain signaling, and internalization. Downstream effects on insulin secretion from pancreatic beta cells indicate that these processes are relevant to GLP-1R physiological actions and might be therapeutically targetable.

Highlights

  • G protein–coupled receptors (GPCRs), the largest membrane receptor family in eukaryotes [1], are integral membrane proteins, and, as such, both their physical organization and their signaling properties are modulated by the lipid composition of the surrounding membrane [2,3]

  • To determine the influence of agonist binding upon glucagon-like peptide-1 receptor (GLP-1R) raft partitioning in pancreatic beta cells, we measured SNAP-GLP-1R levels in purified detergent-resistant fractions (DRFs) and detergent-soluble fractions (DSFs) from total membrane preparations of mouse insulinoma MIN6B1 cells [31] stably expressing human GLP-1R SNAP-tagged at the extracellular N terminus (MIN6B1 SNAP-GLP-1R cells) [21]

  • In cells expressing SNAP-GLP-1R labeled with the long-lived lanthanide Forster resonance energy transfer (FRET) donor Lumi4-Tb, timeresolved FRET (TR-FRET) was increased upon exendin-4 addition (S1E Fig), indicating relative movement between the Lumi4-Tb-labeled GLP-1R extracellular domain and the plasma membrane, possibly reflecting the closure of the receptor extracellular domain upon ligand binding, as recently suggested [36]

Read more

Summary

Introduction

G protein–coupled receptors (GPCRs), the largest membrane receptor family in eukaryotes [1], are integral membrane proteins, and, as such, both their physical organization and their signaling properties are modulated by the lipid composition of the surrounding membrane [2,3]. The localization of GPCRs to dynamic membrane nanodomains has been widely reported [4,5,6]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call