Abstract
To identify the structural determinants necessary for mu opioid receptor desensitization, we serially ablated potential phosphorylation sites in the carboxyl tail of the receptor and examined their effects on [D-Ala2,N-Me-Phe4,Gly-ol5]enkephalin (DAMGO)-induced desensitization. First, we replaced Thr394 with alanine (T394A) and stably expressed this mutant receptor in Chinese hamster ovary cells. The T394A receptor did not desensitize after 1 h of treatment with DAMGO, indicating that Thr394 is required for agonist-induced early desensitization. To test whether Thr394 was the only residue necessary, we investigated the importance of 7 potential phosphorylation sites between residues 363 and 383, which were all replaced by alanines with the Thr394 maintained. This mutant (AT) showed partial loss of desensitization (30%), which was attributable to the Ala mutation at Thr383, since complete desensitization was achieved by restoring Thr383 (ATT). These results suggest that Thr394 is the primary recognition site for G protein-coupled receptor kinases, but Thr383 is also required for complete agonist-induced desensitization. The specificity of Thr394 as the primary initiation site appears to be dependent on the preceding acidic amino acid stretch, because in a mutant in which glutamic acid residues at 388, 391, and 393 were replaced by glutamines (EQ), agonist-induced desensitization was completely abolished, identical to the T394A mutant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.