Abstract

Ligand-gated ion channels display a fundamental property-channels remain virtually closed at rest and open upon agonist binding. Here we show that substituting alanines for either of two amino acid residues (T314 or L317) in the M2 region of the gamma-aminobutyric acid (GABA) rho1 subunit results in spontaneous channel opening in the absence of ligand. Surprisingly, for two single point mutants (T314A or L317A), application of very low concentrations of agonist partially suppressed this spontaneous current, while higher concentrations re-activated the receptors. When both of these sites were mutated (T314A/L317A), GABA nearly completely suppressed the constitutive current and did not re-activate the current even at very high concentrations. This study provides important new insights into the structure-function relationship of ligand-gated ion channels, where modification of the structure of the channel pore region not only alters the allosteric transition of the receptor protein but also reverses the polarity of agonist regulation of channel gating. Our results suggest that the sites where these two residues are located are structurally critical for channel gating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.