Abstract

In this report we demonstrate that in HEK293 cells stably expressing the human V2vasopressin receptor, ligand-induced internalization of the hormone receptor occurs via the clathrin-dependent pathway. Studies of receptor trafficking either by direct visualization of the V2receptor by confocal microscopy or binding experiments show a rapid internalization (half-time 6–7 min). Blocking of the clathrin-dependent pathway by hypertonic sucrose increased vasopressin-induced cellular cAMP production and decreased the desensitization of the V2receptor–adenylyl cyclase system. Thus, internalization appears to be a major regulatory mechanism terminating vasopressin action in HEK293 cells. Two antagonists of the vasopressin V2receptor exerted different effects on receptor internalization, as determined by confocal fluorescence microscopy. The nonpeptidic antagonist OPC31260 did not induce any visible receptor internalization, whereas the peptidic antagonist d(CH2)5[D-Tyr(Et)2,Val4,Lys8,Tyr-NH29]VP induced a slow but substantial receptor internalization. These results suggest that long-term treatment with peptidic V2receptor antagonists might lead to desensitization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call