Abstract
Objective: The current study aimed to prepare and optimize Agomelatine (AMN) ethosomes for enhanced transdermal drug delivery. Methods: In this study cold method was employed to manufacture the AMN-loaded ethosomes with dissimilar quantities of Phosphatidyl Choline (PC): Cholesterol: Ethanol. Transmission Electron Microscopy (TEM) was employed to evaluate the appearance of the formed ethosomes. Other formulation parameters like vesicle size and zeta potential, polydispersity index, transition temperature, and entrapment efficiency were also investigated. Results: The microscopy results showed that AMN ethosomes have a smooth surface. It was discovered that the AMN-3 formulation of transdermal ethosomes had 92.15±1.3 entrapment efficiency with good vesicle diameter. The release of agomelatine adhered to the zero-order release model. The polydispersity Index (PI) and zeta potential of the optimized formulation were found to be 0.209 and-14.09±1.95 mV, respectively. The maximum flux for the ethosome formulation (AMN-3) was 34.29 µg. h/cm2. A 10.71 fold increment was observed in the bioavailability of optimized formulation than control (oral suspension). A higher drug concentration in the blood suggested better systemic absorption of ethosomes. The optimized formula has a Tmax of 4.0±0.08h and 73.38±1.37 of Cmax. The AMN ethosomes were found to be more stable when stored at 4 °C. Conclusion: The current study suggests that ethosomal vesicles may improve transdermal dispersion without causing skin irritation. Agomelatine-loaded ethosome has the potential to be one of the most important transdermal application techniques for the treatment of depression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.