Abstract

Human thermal comfort management, motion capture and protection are highly needed in electronic wearable devices for their stretchability, wearing comfort, and versatility. Multifunctional smart textile becomes a favorable solution. Here, multifunctional electronic knitted fabric for strain sensing and thermal management is provided by a simple dip-coating process, involving the deposition of one-dimensional (1D) silver nanowires (AgNWs) and two-dimensional (2D) transition metal carbide/carbonitride (MXene) nanosheet. This multifunctional knitted fabric possesses excellent mechanical durability (>1000 cyclic stretching) and a wide strain sensing range limitation (~445%) comes from the high elastic knitted fabric. In addition, outstanding Joule heating (When the current is 0.10 A (A), the fabric can reach an equilibrium temperature of around 126 °C within 37 s, with a great electrothermal conversion efficiency hr+c of 0.13 and a maximum heating rate of 9.73 °C/s) and temperature sensing performance (temperature coefficient of resistance (TCR) of − 0.07%/°C) are achieved. Moreover, this smart fabric gives a high EMI shielding performance (44 dB). This work provides multifunctional AgNWs/MXene fabric using a simple dip-coating process for physical monitoring, wearable thermal management and other applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.