Abstract

Polyetheretherketone (PEEK) is an ideal substitute material for bone tissue engineering, which can avoid the stress shielding phenomenon due to its similar mechanical properties to natural human bone. Complex bone defect and postoperative infection are still two enormous challenges in orthopedic clinics. It’s well-known that additive manufacturing possesses the merits of high-precision and rapid prototyping, thus it easily meets the needs of mold processing. In the present study, we developed a novel Ag-decorated 3D printed PEEK via catecholamine chemistry. SEM image showed that silver nanoparticles (AgNPs) were evenly anchored on the surface. The following antibacterial tests, including bacterial inhibition ring, bacterial dynamics curves and antibiofilm test, indicated that the Ag-decorated 3D PEEK scaffolds displayed significant antibacterial effect towards Gram-negative and Gram-positive bacteria. Then MG-63 cells were seeded on samples for cell proliferation and ALP activity tests. The results demonstrated the scaffold modified with AgNPs could support cell proliferation, and enhanced higher alkaline phosphatase activity compared with pure PEEK scaffold. Expectedly, this dual functional 3D material holds great potential application in clinical bone tissue repair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.