Abstract
Freedman [Adv. in Appl. Math. 40 (2008) 180–193; Ann. Appl. Stat. 2 (2008) 176–196] critiqued ordinary least squares regression adjustment of estimated treatment effects in randomized experiments, using Neyman’s model for randomization inference. Contrary to conventional wisdom, he argued that adjustment can lead to worsened asymptotic precision, invalid measures of precision, and small-sample bias. This paper shows that in sufficiently large samples, those problems are either minor or easily fixed. OLS adjustment cannot hurt asymptotic precision when a full set of treatment–covariate interactions is included. Asymptotically valid confidence intervals can be constructed with the Huber–White sandwich standard error estimator. Checks on the asymptotic approximations are illustrated with data from Angrist, Lang, and Oreopoulos’s [Am. Econ. J.: Appl. Econ. 1:1 (2009) 136–163] evaluation of strategies to improve college students’ achievement. The strongest reasons to support Freedman’s preference for unadjusted estimates are transparency and the dangers of specification search.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.