Abstract

Virial–based methods for estimating active supermassive black hole masses are now commonly used on extremely large spectroscopic quasar catalogs. Most spectral analyses, though, do not pay enough attention to the detailed continuum decomposition. To understand how this affects virial mass estimates, we test the influence of host galaxy light on them, along with a Balmer continuum component. A detailed fit with the new spectroscopic analysis software QSFIT demonstrates that the presence or absence of continuum components does not significantly affect the virial-based results for our sample. Taking a host galaxy component into consideration or not, instead, affects the emission line fitting in a more pronounced way at lower redshifts, where in fact we observe dimmer quasars and more visible host galaxies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call