Abstract

Galaxy-scale outflows, which are thought to provide the link connecting the central black hole to its host galaxy, are now starting to be observed. However, the physical origin of the mechanism driving the observed outflows, whether due to energy-driving or radiation-driving, is still debated; and in some cases, it is not clear whether the central source is an active galactic nucleus (AGN) or a nuclear starburst. Here we study the role of radiation pressure on dust in driving galactic-scale AGN outflows, and analyse the dynamics of the outflowing shell as a function of the underlying physical parameters. We show that high-velocity outflows ($\gtrsim$1000 km/s) with large momentum flux ($\gtrsim 10 L/c$) can be obtained, by taking into account the effects of radiation trapping. In particular, the high observed values of the momentum boosts can be reproduced, provided that the shell is initially optically thick to the reprocessed infrared radiation. Alternatively, the inferred measurements of the momentum flux may be significantly biased by AGN variability. In this context, the observations of powerful outflows on kiloparsec scales, with no or weak signs of ongoing nuclear activity at the present time, could be re-interpreted as relics of past AGN episodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.