Abstract

A crucial difficulty in understanding the nature of the putative accretion disk in AGNs is that some of its key intrinsic spectral signatures cannot be observed directly. The strong emissions from the broad-line region (BLR) and the obscuring torus, which are generally yet to be spatially resolved, essentially ‘bury’ such signatures. Here we argue that we can actually isolate the disk emission spectrum by using optical and near-infrared polarization of quasars and uncover the important spectral signatures. In these quasars, the polarization is considered to originate from electron scattering interior to the BLR, so that the polarized flux shows the disk spectrum with all the emissions from the BLR and torus eliminated. The polarized flux observations have now revealed a Balmer edge feature in absorption and a blue near-infrared spectral shape consistent with a specific and robust theoretical prediction. These results critically verify the long-standing picture of an optically thick and locally heated disk in AGNs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.